torchvtk.utils¶
make_nd¶
-
torchvtk.utils.
make_2d
(t)¶
-
torchvtk.utils.
make_3d
(t)¶
-
torchvtk.utils.
make_4d
(t)¶ Prepends singleton dimensions to t until 4D
-
torchvtk.utils.
make_5d
(t)¶ Prepends singleton dimensions to t until 5D
-
torchvtk.utils.
make_nd
(t, n)¶ Prepends singleton dimensions to t until n-dimensional
normalize_hounsfield¶
-
torchvtk.utils.
normalize_hounsfield
(vol, dtype=None)¶ Normalizes vol by 4095 and clamps to [0,1]. dtype=None defaults to 32-bit float
TransferFunctionApplication¶
-
class
torchvtk.utils.
TransferFunctionApplication
(as_pts=False)¶ Bases:
torch.nn.Module
-
__init__
(as_pts=False)¶ A torch.nn.Module that applies a transfer function differentiably
- Parameters
as_pts (bool) – Wether the given TF will be in point form (True) or 1D texture (False).
-
forward
(x, tf)¶ Applies the transfer function tf to the volume x
- Parameters
x (torch.Tensor) – Tensor depicting a volume with intensity values (N, 1, D, H, W)
tf (torch.Tensor, list of such) – If as_pts a list of Tensors (NumPoints, Channels) is expected with len(list) == batch_size. If False a torch.Tensor (N, Channels, TF_resolution).
- Returns
Tensor with the TF applied. New shape (N, Channels, D, H, W)
- Return type
(torch.Tensor)
-
tex_from_pts¶
-
torchvtk.utils.
tex_from_pts
(tf_pts, resolution=4096)¶ Interpolates tf_pts to generate a TF texture of shape (N, C, resolution) with C determined by the TF
apply_tf_torch¶
-
torchvtk.utils.
apply_tf_torch
(x, tf_pts)¶ Applies the TF described by points tf_pts (N x [0,1]^C+1 with x pos and C channels) to x. The operation always computes on torch.float32. The output is cast to x.dtype
- Parameters
x (torch.Tensor) – The intensity values to apply the TF on. Assumed shape is ([N,] 1, …) (optionally with batch size N, must match length of tf_pts list)
tf_pts (torch.Tensor, List of such) – Tensor of shape (N, (1+C)) containing N points consisting of x coordinate and mapped features (e.g. RGBO)
- Returns
Tensor with TF applied of shape (N, C, …) with batch size N (same as x) and number of channels C (same as tf_pts)
- Return type
torch.Tensor
apply_tf_tex_torch¶
-
torchvtk.utils.
apply_tf_tex_torch
(vol, tf_tex)¶ Applies a (batch of) transfer function textures tf_tex to a (batch of) volume vol
- Parameters
vol (torch.Tensor) – ([N,] 1, D, H, W) volume with intensity values
tf_tex (torch.Tensor) – ([N,] C, R) transfer function texture with C channels and resolution R
- Returns
The preclassified volume of shape ([N,] C, D, H, W)
random_tf_from_vol¶
-
torchvtk.utils.
random_tf_from_vol
(vol, colors='random', max_num_peaks=5, height_range=(0.1, 0.7), width_range=(0.02, 0.3), peak_center_noise_std=0.05, bins=1024, valid_fn=None, use_hist=True, fixed_shape=False, override_peaks=None)¶
pool_map¶
-
torchvtk.utils.
pool_map
(fn, data, num_workers=0, dlen=None, title=None)¶ Multithreaded map function that displays a progress bar
- Parameters
fn (function) – Function to be applied to the elements in data
data (iterable) – Iterable on which the function fn is applied.
num_workers (int) – Number of threads to do the computation
dlen (int) – A way to supply the length of data separately (to display in progress bar)
title (str) – Title to be displayed next to the progress bar
- Returns
A list of results [fn(data[0]), …. fn(data[-1])]
pool_map_uo¶
-
torchvtk.utils.
pool_map_uo
(fn, data, num_workers=0, dlen=None)¶ Multithreaded unordered map function that displays a progress bar
- Parameters
fn (function) – Function to be applied to the elements in data
data (iterable) – Iterable on which the function fn is applied.
num_workers (int) – Number of threads to do the computation
dlen (int) – A way to supply the length of data separately (to display in progress bar)
- Returns
A list of results [fn(data[0]), …. fn(data[-1])]